РИС. 5
РИС . б
РИС. 7
Путь, пройденный лучом света на поверхности от А до В, равен отрезку А’ В. Следовательно, он проходит наименьшее расстояние.
Как и все основные проблемы в математике, вопрос о максимумах и минимумах имел длинную историю. Достаточно вспомнить классическую задачу — или, скорее, легенду — о Ди- доне, королеве Тира. Она бежала с последними оставшимися ей верными людьми и достигла берегов, на которых ей суждено было создать свое царство, Карфаген. Она попросила местного короля Иарбанта дать ей кусок земли, где могли бы жить ее подданные. Тот согласился с одним условием: владения Дидоны должны быть равны площади, которую она сможет покрыть воловьей шкурой. Чтобы упростить объяснение, представим, что побережье — прямая линия, без заливов, бухт и мысов. Царица разрезала шкуру на тончайшие ремешки так, что получилась длинная веревка. Она соединила ее концы (рисунок 5), а затем применила базовый принцип изопериметров, то есть площадей, периметры которых имеют одинаковую длину. Одна часть этого периметра проходила вдоль моря, а оставшаяся должна была охватить как можно большую площадь. Решение состояло в том, что веревка из воловьей кожи должна располагаться в виде полукруга, диаметр которого — побережье (рисунок 6). Задача Дидоны относится к разряду классических изопериметриче- ских задач, которые часто встречаются в физике. Она относится к более широкой категории задач, похожих друг на друга, поскольку в них всегда надо найти экстремум функционала — максимум или минимум — при заданных неизменных условиях. Существует наглядный и к тому же очень древний пример, автором которого является Герон Александрийский (ок. 10- 70). Он задался вопросом об отражении света, заметив, что луч, идущий от А к В, отражаясь от зеркала, следует по самой короткой траектории (рисунок 7).
РИС. 8
РИС. 10
Впоследствии Ферма сформулировал закон о преломлении света (так называемый закон Снеллиуса), по которому n, sinθ = n sinθ Однако в этом случае пройденное расстояние не было минимальным. Минимальным было время, за которое луч проходит от A до B, а расстояние на самом деле было, как мы сказали бы сегодня, функцией времени: e = v · t, где v — скорость луча света в преломляющей его среде. Таким образом, минимизируется функция ƒ(t) · vt (рисунки 8-9).
Хотя семья Пьера де Мопертюи (1698- 1759) сделала состояние, промышляя пиратством — его отец был корсаром, получившим дворянский титул, — и у Пьера была возможность сделать военную карьеру, он выбрал науку и стал выдающимся математиком, физиком, естествоиспытателем и астрономом. Мопертюи был последователем Ньютона. Приняв участие в экспедиции в далекую Лапландию, чтобы собрать данные о длине земного меридиана, он пришел к выводу, что Земля сплюснута у полюсов, и подтвердил таким образом теорию своего учителя. Мопертюи также первым сформулировал принцип наименьшего действия. Правда, некоторые историки ставили его первенство под вопрос, поскольку считали, что Эйлер узнал об этом принципе раньше и уже использовал его. В отношениях между Мопертюи, одной из главных фигур Прусской академии, и Эйлером были периоды большой напряженности. Согласно некоторым источникам, Мопертюи так писал о швейцарском ученом: "Эйлер... в общем чрезвычайно странный персонаж... это неутомимый и надоедливый человек, который любит вмешиваться во все дела, хотя структура Академии и распоряжения нашего короля запрещают подобные вмешательства".
Вышеуказанная вариация есть не что иное, как инструмент вычисления. Если у(х) — это кривая, которая, проходя через (a, y(a)) и (b, y(b)), отвечает необходимым требованиям, то вариация кривой будет небольшим изменением, что обозначается знаком 8 перед ней (рисунок 10). В 1744-1746 годах Мопертюи сформулировал свой принцип наименьшего действия, который можно сформулировать как "природа экономит свои усилия", поскольку "осуществляет их", выполняя наименьшее из возможных действий. Действие — величина, которую можно определить. Она может быть представлена (хоть это и не единственный способ) как сумма задействованных сил, умноженная на пройденный путь, и именно он должен быть минимальным.
Эйлер изложил свою версию принципа в 1744 году в статье "Метод нахождения кривых линий, обладающих свойствами максимума либо минимума, или решение изопериметрической задачи, взятой в самом широком смысле", которую историки обычно называют по первому слову в оригинальном латинском заголовке, Methodus. Именно она положила начало современному вариационному исчислению.
Поскольку наш мир устроен наисовершеннейшим образом и является творением всеведущего Творца, во всем мире не происходит ничего такого, в чем не было бы воплощено какое-либо правило максимума или минимума.
Эйлер
В 1755 году математик итальянского происхождения Жозеф Луи Лагранж, которому было всего 19 лет, написал Эйлеру длинное письмо, в котором содержалось решение одной задачи с помощью усовершенствованной системы вариационного исчисления. В 1772 году Лагранж с благословения Эйлера, признавшего важность его работы, опубликовал свой метод.