Эйлер. Математический анализ - Страница 2


К оглавлению

2

Первый русский период Эйлера можно считать самым плодотворным в его научном творчестве. Как можно предположить, зная о продуктивности Эйлера, открытия, совершенные в это время, настолько многочисленны, насколько и удивительны.

Только в области анализа ученый нашел способ точного вычисления числа е и определил многие его свойства; открыл гамма-функцию (Г), которая позволяет интерполировать значения функций определенного вида и используется в комбинаторике, теории вероятностей, теории чисел и физике; открыл формулу Эйлера — Маклорена для вычисления сумм и интегралов; решил (и впоследствии обобщил полученные результаты) Базельскую задачу, поставившую вопрос о сумме ряда

1 + 1/2 + 1/3 + 1/4 + ...

К этому же периоду относятся важные работы по теории чисел, такие как определение постоянной Эйлера — Мас- керони, изучение так называемых чисел Ферма и решение задачи о мостах Кенигсберга в 1736 году, приведшее к созданию совершенно новой области математики — теории графов. В 1741 году Эйлер принял предложение Фридриха Великого, короля Пруссии, и переехал в Берлин. Ученый продолжал делать одно открытие за другим. Среди них мы можем упомянуть о формуле для многогранников, связывающей грани (F), ребра (S) и вершины ( V) многогранника простым и неожиданным для геометров того времени образом:

C - A + V = 2,

а также определение прямой Эйлера. К этому периоду относятся работы над проблемой Гольдбаха, самой знаменитой теоремой о числах после Великой теоремы Ферма, и исследования в области вариационного исчисления, имевшего огромное значение для физики. Именно в Берлине Эйлер написал трактаты, посвященные анализу (возможно, это самые гениальные его сочинения), а также труды по инженерному делу и механике.

Последний этап своей жизни Эйлер вновь провел в Санкт- Петербурге. Ему было уже больше 50 лет, он испытывал большие трудности со зрением, но до самой смерти продолжал писать научные статьи. Ставший легендой мировой математики еще при жизни, в этот период Эйлер в основном занимался теорией чисел, в частности простыми числами (и связанными с ними, такими как числа Мерсенна и дружественные числа), диофантовыми уравнениями и разбиением множеств. Он также нашел время для более легкомысленных задач — магических квадратов и других математических игр — и даже создал игру для детей (круги Эйлера), дошедшую до наших дней. Кроме того, он написал превосходную научно-популярную работу о вопросах механики и астрономии, которую посвятил принцессе Ангальт-Дессау.

1707 15 апреля в Базеле, Швейцария, родился Эйлер.

1720 При поддержке Иоганна Бернулли Эйлер в возрасте всего лишь 13 лет поступает в Базельский университет.

1723 Получает степень магистра философии за сравнительный анализ идей Декарта и Ньютона.

1727 Не получив место профессора физики в Базельском университете, переезжает в Россию.

1731 Становится профессором физики в Петербургской академии наук. Положение, которое он теперь занимает, делает его фигуру одной из самых влиятельных среди ученых.

1734 Женится на Катерине Гзель, дочери художника Академии. У них будет 13 детей, из которых выживут только пять.

1735 Ученый начинает терять зрение, что, тем не менее, не мешает ему решить знаменитую Базельскую задачу и прославиться в научном мире.

1736 Выходит первая книга Эйлера. Он решает задачу о мостах Кенигсберга. Известность ученого продолжает расти.

1741 Принимает предложение Фридриха II, короля Пруссии, и вместе с семьей переезжает в Берлин, где получает место в Академии.

1742 Эйлер и Гольдбах в переписке обсуждают задачу, позже названную проблемой Гольдбаха.

1748 Эйлер публикует один из самых известных своих трудов — 4 Введение в анализ бесконечно малых", — в котором рассматривает в основном математические функции.

1755 Издается еще одна фундаментальная работа ученого — "Дифференциальное исчисление".

1766 Вследствие идейных расхождений с Фридрихом II Эйлер снова уезжает в Россию.

1768 Выходит третье сочинение Эйлера

1770 по математическому анализу — "Интегральное исчисление".

1771 На здоровом глазу Эйлера образуется катаракта. Он полностью теряет зрение, но это только улучшает его способности считать в уме.

1783 18 сентября в Санкт-Петербурге Эйлер умирает от кровоизлияния в мозг.

ГЛАВА 1
Базель, колыбель великого математика

Базель был прекрасным местом для начала научной карьеры, особенно в области математики.

Этот город был интеллектуальным центром высочайшего уровня, здесь располагался лучший университет Швейцарии и жили многие члены семьи Бернулли, самой знаменитой династии математиков в истории.

Именно они оказали покровительство молодому и многообещающему Эйлеру и привили ему любовь к анализу, которую он пронес через всю свою жизнь.

Базель — город в Швейцарии, занимающий стратегическое положение у границы с Францией и Германией. Он расположен на берегу Рейна недалеко от водопадов, которые делают невозможным речную навигацию. Сейчас в нем вместе с пригородами проживает 750 тысяч человек. Здесь находится самый старый в Швейцарии университет и многочисленные исторические памятники. В Базеле родились и жили такие выдающиеся деятели, как Андреас Везалий, Карл Густав Юнг, Эразм Роттердамский, Фридрих Ницше и Парацельс, а также семья Бернулли. Сегодня самый известный житель Базеля — теннисист Роджер Федерер. Более образованные горожане предпочитают упоминать Эразма Роттердамского, который, хоть и родился не здесь, жил и умер в Базеле. Среди ученых и в особенности математиков самым выдающимся сыном Базеля считается Леонард Эйлер, родившийся здесь более 300 лет тому назад.

2