Эйлер. Математический анализ - Страница 13


К оглавлению

13

В англосаксонских странах очень любят составлять рейтинги из десяти пунктов. Существует множество книг и телевизионных программ, посвященных десяти лучшим представителям в какой-либо области. В рамках этой традиции были созданы списки научных работ, классифицированные по изяществу, влиянию на повседневную жизнь или по интеллектуальной сложности. В числе прочих был сделан список лучших достижений Эйлера. В случае с другими учеными это часто невозможно, поскольку на такой список попросту не хватит материала, но с Эйлером такой опасности нет: его открытий будет достаточно и на более длинный список. Итак, что же стоит на первом месте? Это формула

π/6 = 1 + 1/2 + 1/3 + 1/4 + ...

в которой содержится решение Базельской задачи. Ее происхождение неизвестно, но она вполне закономерна. Зная, что такое гармонический ряд, то есть ряд, соответствующий сумме членов, обратных числам

1 + 1/2 + 1/3 + 1/4 + ...

и зная, что он расходится, логично задаться вопросом о сумме обратных квадратов, которые кажутся сходящимися, однако к какому конкретному числу — неизвестно:

1 + 1/2 + 1/3 + 1/4 + ... = 1,644934.

Не существовало ни малейшей догадки по этому вопросу. Если попробовать сложить тысячи чисел из этого ряда, будет ясно: сумма приближается к определенному числу, но в то же время настолько медленно, что практически невозможно не округлить его до сотых. Считается, что впервые о Базельской задаче упомянул итальянский священник и математик Пьетро Менголи (1626-1686), а Эйлеру о ней рассказал Иоганн Бернулли. Уже в 1729 году ученый говорил о задаче в письме Гольдбаху. В 1730 году эта задача занимала мысли всех математиков и привлекала их так же, как впоследствии — Великая теорема Ферма. Эйлер приступил к ней с таким энтузиазмом, что нашел несколько вариантов решения. Все они необыкновенно изобретательны, а некоторые являются идеалом для специалистов по анализу, особенно решение, опубликованное в 1741 году, в котором используется техника интегрального исчисления. Классическое же решение эксперты называют "третьим": оно наиболее изящное с точки зрения неподготовленного читателя. Мы немного поговорим о нем в приложении 2.

Недавно я нашел, и совсем неожиданно, изящное выражение для суммы ряда, зависящего от квадратуры круга... А именно, шестикратную сумму этого ряда равной квадрату периметра круга, диаметр которого 1.

Эйлер

Решение Базельской задачи стало неожиданностью для научного сообщества, и новость об этом разлетелась по свету. Мир в то время был довольно небольшим, мир образованных людей — еще меньше, а способы сообщения, кроме почты, труднодоступны.

Эйлер подготовил почву для решения, проведя предварительные вычисления и прочие операции. Например, сначала он использовал промежуточные суммы, как в методе Эйлера — Маклорена, чтобы получить более точное число, чем 1,64. Благодаря своему уму Эйлер нашел шесть точных цифр, и его отправной точкой стало число:

1 + 1/2 + 1/3 + 1/4 + ... = 1,644934.

С другой стороны, от Эйлера, для которого возводить в различные степени число л было обычным делом и обладавшего необыкновенной памятью, не могло ускользнуть, что 1,644934 очень похоже на π/6. Следовательно, мы можем предположить, что, вступая на этот тернистый путь, Эйлер уже знал, к чему он придет. Ни один его современник не обладал таким преимуществом. Гениальность Эйлера позволила ему обойтись без сложения около 3000 членов исходного ряда.


БАЗЕЛЬСКАЯ ЗАДАЧА: КОНЕЦ

Решив Базельскую задачу, Эйлер не остановился на достигнутом. Вернемся к дзета-функции из предыдущей главы:

ξ(x) = 1 + 1/2 + 1/3 + 1/4 + ... + 1/n + ...

При х - 1 мы получаем гармонический ряд, а при х - 2 — ряд из Базельской задачи. Эйлер углубил этот вопрос и на основе своих размышлений над Базельской задачей получил следующие выражения для ряда степеней:

ξ(4) = 1 + 1/2 + 1/3 + 1/4 + ... + 1/n + ... = π/90

ξ(6) = 1 + 1/2 + 1/3 + 1/4 + ... + 1/n + ... = π/945

ξ(8) = 1 + 1/2 + 1/3 + 1/4 + ... + 1/n + ... = π/9450

ξ(10) = 1 + 1/2 + 1/3 + 1/4 + ... + 1/n + ... = π/93555

до ξ(26) со все более сложными формулами, где n всегда стояло в степени л, соответствующей ξ(n). В 1739 году Эйлер пришел к общему выражению:

ξ(2n) = (-1) (2π)B/2·(2n)!,

в котором содержались числа В, числа Бернулли (о них мы поговорим в главе 4). Постепенно они становятся все больше и ими все труднее оперировать; для примера достаточно записать пятидесятый член:

ξ(50) = 39 604 576 419 286 371866 998 202π/285 258 771457 546 764 463 363 635 252 374 414183 254 363 234 375


ПЕРВАЯ КОМПЬЮТЕРНАЯ ПРОГРАММА В ИСТОРИИ

Ада Байрон (1815-1852), впоследствии вышедшая замуж за Уильяма Кинга и ставшая известной как Ада Кинг, графиня Лавлейс, была дочерью лорда Байрона. Однако она никогда не знала отца, поскольку родители развелись меньше чем через месяц после ее рождения. Аде ничто не мешало развивать математические способности, так как ее мать считала математику мощным противоядием от возможных склонностей к литературе: глубокая ненависть к бывшему мужу и его работе сопровождала ее всю жизнь. Главную роль в научной деятельности Ады сыграл знаменитый математик Чарльз Бэббидж (1791-1871), создатель первого компьютера в истории. Ада же сделала для этой машины рекурсивный алгоритм, который позволял вычислять числа Бернулли. С точки зрения информатики процедура, придуманная Адой, является самой настоящей компьютерной программой, первой в истории. В 1980-х годах министерство обороны США в честь женщины-ученого дало имя АДА универсальному языку программирования по стандарту MIL-STD-1815 (номер соответствует году рождения Ады).

13